Homework 7 PS405

Due: Tuesday, October 11, 2016 Calculate the internal magnetic field (Binternal) interacting with the electron in the ground state of a hydrogen atom as the proton appears to be orbiting the electron. Assume Bohr orbits for this calculation. $B_{internal} = \underline{\hspace{1cm}}$ tesla The spin-orbit interaction is due to the $-\vec{\mu} \cdot \vec{B}$ correction to the potential energy in the Hamiltonian. If \vec{B} defines the z-direction, calculate the spin magnetic dipole moment along the z-direction. Assume $g_s = 2$. $(\mu_e)_z = MeV/T$ Calculate the shift in the ground state energy of a hydrogen atom when considering the difference between the $|n \ell m_{\ell} m_{s}\rangle$ eigenstates (i.e., no perturbation) and the $|n \ell j m_{i}\rangle$ eigenstates (i.e., with the $\vec{S} \cdot \vec{L}$ perturbation). eV Calculate the *fixed* angle between the spin vector \vec{S} and the orbital vector \vec{L} in spin-orbit coupling for both $j = \frac{3}{2}$ state. $\theta_{P_{3/2}} =$ _____ degrees

 $\theta_{D_{3/2}} =$ _____ degrees

5.	obtai	e a 3D state of the hydrogen atom and carry out the explicit integration required to the expectation value of $1/r^3$. Compare your answer with the result obtained from neral formula $\langle \frac{1}{r^3} \rangle = \frac{2}{a^3 n^3 \ell(\ell+1)(2\ell+1)}$.
6.	com ratio	erium is an isotope of hydrogen with one electron bound to a nucleus (the deuteron) prising a proton and a neutron. The deuteron has spin $I = I$, and has a gyromagnetic $g_D = 0.857$, which is the only change needed to calculate the hyperfine structure of the ad state of deuterium. In the ground state, the total angular momentum \vec{J} is just $\vec{J} = 1$ where \vec{S} is the spin of the electron.
	a.	Calculate the splitting of the ground state (ΔE) and produce a figure showing the splitting between the $J=1/2$ state and the $J=3/2$ state.
		$\Delta E = \underline{\qquad} eV$
	b.	Calculate the wavelength of the emitted photon when the electron transitions from the $J=3/2$ state to the $J=1/2$ state.
		$\lambda = \underline{\qquad} cm$
	c.	What is the mean lifetime of this state?
		$ au = \underline{\qquad} million \ years$
7.		O doublet lines in a sodium atom have wavelengths of 589.0 nm and 589.6 nm. What magnetic field induced by the electron orbital motion?

 $B = \underline{\hspace{1cm}} tesla$